|

Applying Reinforcement Learning for Enhanced Cybersecurity against Adversarial Simulation.

Researchers

Journal

Modalities

Models

Abstract

Cybersecurity is a growing concern in today’s interconnected world. Traditional cybersecurity approaches, such as signature-based detection and rule-based firewalls, are often limited in their ability to effectively respond to evolving and sophisticated cyber threats. Reinforcement learning (RL) has shown great potential in solving complex decision-making problems in various domains, including cybersecurity. However, there are significant challenges to overcome, such as the lack of sufficient training data and the difficulty of modeling complex and dynamic attack scenarios hindering researchers’ ability to address real-world challenges and advance the state of the art in RL cyber applications. In this work, we applied a deep RL (DRL) framework in adversarial cyber-attack simulation to enhance cybersecurity. Our framework uses an agent-based model to continuously learn from and adapt to the dynamic and uncertain environment of network security. The agent decides on the optimal attack actions to take based on the state of the network and the rewards it receives for its decisions. Our experiments on synthetic network security show that the DRL approach outperforms existing methods in terms of learning optimal attack actions. Our framework represents a promising step towards the development of more effective and dynamic cybersecurity solutions.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *