| |

Application of deep learning classification model for regional evaluation of roof pressure support evolution effects over time in coal mining face.

Researchers

Journal

Modalities

Models

Abstract

Hydraulic support leg pressure serves as a crucial indicator for assessing work face support quality. Current evaluation methods for support quality primarily concentrate on static analyses-like inadequate initial support force, pressure overrun, and uneven bracket force-while neglecting dynamic column pressure changes. This paper introduces a model for assessing hydraulic support quality using deep learning techniques. Real-time data is preprocessed into a spatio-temporal pressure sub-matrix sample, which is then inputted into the model. This process assesses the support quality type and characterizes its dynamic evolution within the area. The model facilitates the identification of dynamic support quality effects in the working face area, aiding operators in making targeted adjustments to hydraulic support status. Experimental results revealed that the optimized LeNet-5 network-adjusting parameters like convolutional layer count, kernel size, and ReLU activation function-achieved the highest classification accuracy of 85.25 % for support quality, surpassed other networks. Furthermore, the improved LeNet-5 network outperformed other networks in both F1 score and recall. Additionally, the improved LeNet-5 network achieved faster convergence to the optimal solution, accelerated training speed. This highlighted its advantages in evaluating the spatio-temporal support quality of hydraulic supports in smart mining operations.© 2024 The Authors. Published by Elsevier Ltd.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *