|

An artificial intelligence-assisted diagnosis modeling software (AIMS) platform based on medical images and machine learning: a development and validation study.

Researchers

Journal

Modalities

Models

Abstract

Supervised machine learning methods [both radiomics and convolutional neural network (CNN)-based deep learning] are usually employed to develop artificial intelligence models with medical images for computer-assisted diagnosis and prognosis of diseases. A classical machine learning-based modeling workflow involves a series of interconnected components and various algorithms, but this makes it challenging, tedious, and labor intensive for radiologists and researchers to build customized models for specific clinical applications if they lack expertise in machine learning methods.We developed a user-friendly artificial intelligence-assisted diagnosis modeling software (AIMS) platform, which supplies standardized machine learning-based modeling workflows for computer-assisted diagnosis and prognosis systems with medical images. In contrast to other existing software platforms, AIMS contains both radiomics and CNN-based deep learning workflows, making it an all-in-one software platform for machine learning-based medical image analysis. The modular design of AIMS allows users to build machine learning models easily, test models comprehensively, and fairly compare the performance of different models in a specific application. The graphical user interface (GUI) enables users to process large numbers of medical images without programming or script addition. Furthermore, AIMS also provides a flexible image processing toolkit (e.g., semiautomatic segmentation, registration, morphological operations) to rapidly create lesion labels for multiphase analysis, multiregion analysis of an individual tumor (e.g., tumor mass and peritumor), and multimodality analysis.The functionality and efficiency of AIMS were demonstrated in 3 independent experiments in radiation oncology, where multiphase, multiregion, and multimodality analyses were performed, respectively. For clear cell renal cell carcinoma (ccRCC) Fuhrman grading with multiphase analysis (sample size =187), the area under the curve (AUC) value of the AIMS was 0.776; for ccRCC Fuhrman grading with multiregion analysis (sample size =177), the AUC value of the AIMS was 0.848; for prostate cancer Gleason grading with multimodality analysis (sample size =206), the AUC value of the AIMS was 0.980.AIMS provides a user-friendly infrastructure for radiologists and researchers, lowering the barrier to building customized machine learning-based computer-assisted diagnosis models for medical image analysis.2023 Quantitative Imaging in Medicine and Surgery. All rights reserved.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *