| |

Accurate real-time monitoring of high particulate matter concentration based on holographic speckles and deep learning.

Researchers

Journal

Modalities

Models

Abstract

Accurate real-time monitoring of particulate matter (PM) has emerged as a global issue due to the hazardous effects of PM on public health and industry. However, conventional PM monitoring techniques are usually cumbersome and require expensive equipments. In this study, Holo-SpeckleNet is proposed as a fast and accurate PM concentration measurement technique with high throughput using a deep learning based holographic speckle pattern analysis. Speckle pattern datasets of PMs for a wide range of PM concentrations were acquired by using a digital in-line holography microscopy system. Deep autoencoder and regression algorithms were trained with the captured speckle pattern datasets to directly measure PM concentration from speckle pattern images without any air intake device and time-consuming post image processing. The proposed technique was applied to predict various PM concentrations using the test datasets, optimize hyperparameters, and compare its performance with a convolutional neural network (CNN) algorithm. As a result, high PM concentration values can be measured over air quality index of 150, above which human exposure is unhealthy. In addition, the proposed technique exhibits higher measurement accuracy and less overfitting than the CNN with a relative error of 7.46 ± 3.92%. It can be applied to design a compact air quality monitoring device for highly accurate and real-time measurement of PM concentrations under hazardous environment, such as factories or construction sites.
Copyright © 2020 Elsevier B.V. All rights reserved.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *