|

Accelerating quantitative MR imaging with the incorporation of B compensation using deep learning.

Researchers

Journal

Modalities

Models

Abstract

Quantitative magnetic resonance imaging (MRI) attracts attention due to its support to quantitative image analysis and data driven medicine. However, the application of quantitative MRI is severely limited by the long data acquisition time required by repetitive image acquisition and measurement of field map. Inspired by recent development of artificial intelligence, we propose a deep learning strategy to accelerate the acquisition of quantitative MRI, where every quantitative T1 map is derived from two highly undersampled variable-contrast images with radiofrequency field inhomogeneity automatically compensated. In a multi-step framework, variable-contrast images are first jointly reconstructed from incoherently undersampled images using convolutional neural networks; then T1 map and B1 map are predicted from reconstructed images employing deep learning. Thus, the acceleration includes undersampling in every input image, a reduction in the number of variable contrast images, as well as a waiver of B1 map measurement. The strategy is validated in T1 mapping of cartilage. Acquired with a consistent imaging protocol, 1224 image sets from 51 subjects are used for the training of the prediction models, and 288 image sets from 12 subjects are used for testing. High degree of acceleration is achieved with image fidelity well maintained. The proposed method can be broadly applied to quantify other tissue properties (e.g. T2, T1ρ) as well.
Copyright © 2020. Published by Elsevier Inc.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *