|

A Super-Resolution Diffusion Model for Recovering Bone Microstructure from CT Images.

Researchers

Journal

Modalities

Models

Abstract

To use a diffusion-based deep learning model to recover bone microstructure from low-resolution images of the proximal femur, a common site of traumatic osteoporotic fractures.Training and testing data in this retrospective study consisted of high-resolution cadaveric micro-CT scans (n = 26), which served as ground truth. The images were downsampled prior to use for model training. The model was used to increase spatial resolution in these low-resolution images threefold, from 0.72 mm to 0.24 mm, sufficient to visualize bone microstructure. Model performance was validated using microstructural metrics and finite element simulation-derived stiffness of trabecular regions. Performance was also evaluated across a handful of image quality assessment metrics. Correlations between model performance and ground truth were assessed using intraclass correlation coefficients (ICCs) and Pearson correlation coefficients.Compared with popular deep learning baselines, the proposed model exhibited greater accuracy (mean ICC of proposed model, 0.92 vs ICC of next best method, 0.83) and lower bias (mean difference in means, 3.80% vs 10.00%, respectively) across the physiologic metrics. Two gradient-based image quality metrics strongly correlated with accuracy across structural and mechanical criteria (r > 0.89).The proposed method may enable accurate measurements of bone structure and strength with a radiation dose on par with current clinical imaging protocols, improving the viability of clinical CT for assessing bone health.Keywords: CT, Image Postprocessing, Skeletal-Appendicular, Long Bones, Radiation Effects, Quantification, Prognosis, Semisupervised Learning Online supplemental material is available for this article. © RSNA, 2023.© 2023 by the Radiological Society of North America, Inc.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *