|

A robust grey wolf-based deep learning for brain tumour detection in MR images.

Researchers

Journal

Modalities

Models

Abstract

In recent times, the detection of brain tumours has become more common. Generally, a brain tumour is an abnormal mass of tissue where the cells grow uncontrollably and are apparently unregulated by the mechanisms that control cells. A number of techniques have been developed thus far; however, the time needed in a detecting brain tumour is still a challenge in the field of image processing. This article proposes a new accurate detection model. The model includes certain processes such as preprocessing, segmentation, feature extraction and classification. Particularly, two extreme processes such as contrast enhancement and skull stripping are processed under the initial phase. In the segmentation process, we used the fuzzy means clustering (FCM) algorithm. Both the grey co-occurrence matrix (GLCM) as well as the grey-level run-length matrix (GRLM) features were extracted in the feature extraction phase. Moreover, this paper uses a deep belief network (DBN) for classification. The optimized DBN concept is used here, for which grey wolf optimisation (GWO) is used. The proposed model is termed the GW-DBN model. The proposed model compares its performance over other conventional methods in terms of accuracy, specificity, sensitivity, precision, negative predictive value (NPV), the F1Score and Matthews correlation coefficient (MCC), false negative rate (FNR), false positive rate (FPR) and false discovery rate (FDR), and proves the superiority of the proposed work.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *