A review of the applications of generative adversarial networks to structural and functional MRI based diagnostic classification of brain disorders.
Researchers
Journal
Modalities
Models
Abstract
Structural and functional MRI (magnetic resonance imaging) based diagnostic classification using machine learning has long held promise, but there are many roadblocks to achieving their potential. While traditional machine learning models suffered from their inability to capture the complex non-linear mapping, deep learning models tend to overfit the model. This is because there is data scarcity and imbalanced classes in neuroimaging; it is expensive to acquire data from human subjects and even more so in clinical populations. Due to their ability to augment data by learning underlying distributions, generative adversarial networks (GAN) provide a potential solution to this problem. Here, we provide a methodological primer on GANs and review the applications of GANs to classification of mental health disorders from neuroimaging data such as functional MRI and showcase the progress made thus far. We also highlight gaps in methodology as well as interpretability that are yet to be addressed. This provides directions about how the field can move forward. We suggest that since there are a range of methodological choices available to users, it is critical for users to interact with method developers so that the latter can tailor their development according to the users’ needs. The field can be enriched by such synthesis between method developers and users in neuroimaging.Copyright © 2024 Huynh and Deshpande.