| |

A review of machine learning-based methods for predicting drug-target interactions.

Researchers

Journal

Modalities

Models

Abstract

The prediction of drug-target interactions (DTI) is a crucial preliminary stage in drug discovery and development, given the substantial risk of failure and the prolonged validation period associated with in vitro and in vivo experiments. In the contemporary landscape, various machine learning-based methods have emerged as indispensable tools for DTI prediction. This paper begins by placing emphasis on the data representation employed by these methods, delineating five representations for drugs and four for proteins. The methods are then categorized into traditional machine learning-based approaches and deep learning-based ones, with a discussion of representative approaches in each category and the introduction of a novel taxonomy for deep neural network models in DTI prediction. Additionally, we present a synthesis of commonly used datasets and evaluation metrics to facilitate practical implementation. In conclusion, we address current challenges and outline potential future directions in this research field.© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *