|

A Plug-In Graph Neural Network to Boost Temporal Sensitivity in fMRI Analysis.

Researchers

Journal

Modalities

Models

Abstract

Learning-based methods offer performance leaps over traditional methods in classification analysis of high-dimensional functional MRI (fMRI) data. In this domain, deep-learning models that analyze functional connectivity (FC) features among brain regions have been particularly promising. However, many existing models receive as input temporally static FC features that summarize inter-regional interactions across an entire scan, reducing the temporal sensitivity of classifiers by limiting their ability to leverage information on dynamic FC features of brain activity. To improve the performance of baseline classification models without compromising efficiency, here we propose a novel plug-in based on a graph neural network, GraphCorr, to provide enhanced input features to baseline models. The proposed plug-in computes a set of latent FC features with enhanced temporal information while maintaining comparable dimensionality to static features. Taking brain regions as nodes and blood-oxygen-level-dependent (BOLD) signals as node inputs, GraphCorr leverages a node embedder module based on a transformer encoder to capture dynamic latent representations of BOLD signals. GraphCorr also leverages a lag filter module to account for delayed interactions across nodes by learning correlational features of windowed BOLD signals across time delays. These two feature groups are then fused via a message passing algorithm executed on the formulated graph. Comprehensive demonstrations on three public datasets indicate improved classification performance for several state-of-the-art graph and convolutional baseline models when they are augmented with GraphCorr.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *