|

A novel transformer-based DL model enhanced by position-sensitive attention and gated hierarchical LSTM for aero-engine RUL prediction.

Researchers

Journal

Modalities

Models

Abstract

Accurate prediction of remaining useful life (RUL) for aircraft engines is essential for proactive maintenance and safety assurance. However, existing methods such as physics-based models, classical recurrent neural networks, and convolutional neural networks face limitations in capturing long-term dependencies and modeling complex degradation patterns. In this study, we propose a novel deep-learning model based on the Transformer architecture to address these limitations. Specifically, to address the issue of insensitivity to local context in the attention mechanism employed by the Transformer encoder, we introduce a position-sensitive self-attention (PSA) unit to enhance the model’s ability to incorporate local context by attending to the positional relationships of the input data at each time step. Additionally, a gated hierarchical long short-term memory network (GHLSTM) is designed to perform regression prediction at different time scales on the latent features, thereby improving the accuracy of RUL estimation for mechanical equipment. Experiments on the C-MAPSS dataset demonstrate that the proposed model outperforms existing methods in RUL prediction, showcasing its effectiveness in modeling complex degradation patterns and long-term dependencies.© 2024. The Author(s).

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *