A novel approach to texture recognition combining deep learning orthogonal convolution with regional input features.
Researchers
Journal
Modalities
Models
Abstract
Textures provide a powerful segmentation and object detection cue. Recent research has shown that deep convolutional nets like Visual Geometry Group (VGG) and ResNet perform well in non-stationary texture datasets. Non-stationary textures have local structures that change from one region of the image to the other. This is consistent with the view that deep convolutional networks are good at detecting local microstructures disguised as textures. However, stationary textures are textures that have statistical properties that are constant or slow varying over the entire region are not well detected by deep convolutional networks. This research demonstrates that simple seven-layer convolutional networks can obtain better results than deep networks using a novel convolutional technique called orthogonal convolution with pre-calculated regional features using grey level co-occurrence matrix. We obtained an average of 8.5% improvement in accuracy in texture recognition on the Outex dataset over GoogleNet, ResNet, VGG and AlexNet.©2024 Loke.