| |

A novel approach for detection of COVID-19 and Pneumonia using only binary classification from chest CT-scans.

Researchers

Journal

Modalities

Models

Abstract

The novel Coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spread all over the world, causing a dramatic shift in circumstances that resulted in a massive pandemic, affecting the world’s well-being and stability. It is an RNA virus that can infect both humans as well as animals. Diagnosis of the virus as soon as possible could contain and avoid a serious COVID-19 outbreak. Current pharmaceutical techniques and diagnostic methods tests such as Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and Serology tests are time-consuming, expensive, and require a well-equipped laboratory for analysis, making them restrictive and inaccessible to everyone. Deep Learning has grown in popularity in recent years, and it now plays a crucial role in Image Classification, which also involves Medical Imaging. Using chest CT scans, this study explores the problem statement automation of differentiating COVID-19 contaminated individuals from healthy individuals. Convolutional Neural Networks (CNNs) can be trained to detect patterns in computed tomography scans (CT scans). Hence, different CNN models were used in the current study to identify variations in chest CT scans, with accuracies ranging from 91% to 98%. The Multiclass Classification method is used to build these architectures. This study also proposes a new approach for classifying CT images that use two binary classifications combined to work together, achieving 98.38% accuracy. All of these architectures’ performances are compared using different classification metrics.© 2022 The Author(s).

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *