|

A Hybrid Model Based on Improved Transformer and Graph Convolutional Network for COVID-19 Forecasting.

Researchers

Journal

Modalities

Models

Abstract

The coronavirus disease 2019 (COVID-19) has spread rapidly around the world since 2020, with a significant fatality rate. Until recently, numerous countries were unable to adequately control the pandemic. As a result, COVID-19 trend prediction has become a hot topic in academic circles. Both traditional models and existing deep learning (DL) models have the problem of low prediction accuracy. In this paper, we propose a hybrid model based on an improved Transformer and graph convolution network (GCN) for COVID-19 forecasting. The salient feature of the model in this paper is that rich temporal sequence information is extracted by the multi-head attention mechanism, and then the correlation of temporal sequence information is further aggregated by GCN. In addition, to solve the problem of the high time complexity of the existing Transformer, we use the cosine function to replace the softmax calculation, so that the calculation of query, key and value can be split, and the time complexity is reduced from the original O(N2) to O(N). We only concentrated on three states in the United States, one of which was the most affected, one of which was the least affected, and one intermediate state, in order to make our predictions more meaningful. We use mean absolute percentage error and mean absolute error as evaluation indexes. The experimental results show that the proposed time series model has a better predictive performance than the current DL models and traditional models. Additionally, our model’s convergence outperforms that of the current DL models, offering a more precise benchmark for the control of epidemics.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *