A general hypergraph learning algorithm for drug multi-task predictions in micro-to-macro biomedical networks.

Researchers

Journal

Modalities

Models

Abstract

The powerful combination of large-scale drug-related interaction networks and deep learning provides new opportunities for accelerating the process of drug discovery. However, chemical structures that play an important role in drug properties and high-order relations that involve a greater number of nodes are not tackled in current biomedical networks. In this study, we present a general hypergraph learning framework, which introduces Drug-Substructures relationship into Molecular interaction Networks to construct the micro-to-macro drug centric heterogeneous network (DSMN), and develop a multi-branches HyperGraph learning model, called HGDrug, for Drug multi-task predictions. HGDrug achieves highly accurate and robust predictions on 4 benchmark tasks (drug-drug, drug-target, drug-disease, and drug-side-effect interactions), outperforming 8 state-of-the-art task specific models and 6 general-purpose conventional models. Experiments analysis verifies the effectiveness and rationality of the HGDrug model architecture as well as the multi-branches setup, and demonstrates that HGDrug is able to capture the relations between drugs associated with the same functional groups. In addition, our proposed drug-substructure interaction networks can help improve the performance of existing network models for drug-related prediction tasks.Copyright: © 2023 Jin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *