|

A Dual-Channel Deep Learning Approach for Lung Cavity Estimation From Hyperpolarized Gas and Proton MRI.

Researchers

Journal

Modalities

Models

Abstract

Hyperpolarized gas MRI can quantify regional lung ventilation via biomarkers, including the ventilation defect percentage (VDP). VDP is computed from segmentations derived from spatially co-registered functional hyperpolarized gas and structural proton (1 H)-MRI. Although acquired at similar lung inflation levels, they are frequently misaligned, requiring a lung cavity estimation (LCE). Recently, single-channel, mono-modal deep learning (DL)-based methods have shown promise for pulmonary image segmentation problems. Multichannel, multimodal approaches may outperform single-channel alternatives.We hypothesized that a DL-based dual-channel approach, leveraging both 1 H-MRI and Xenon-129-MRI (129 Xe-MRI), can generate LCEs more accurately than single-channel alternatives.Retrospective.A total of 480 corresponding 1 H-MRI and 129 Xe-MRI scans from 26 healthy participants (median age [range]: 11 [8-71]; 50% females) and 289 patients with pulmonary pathologies (median age [range]: 47 [6-83]; 51% females) were split into training (422 scans [88%]; 257 participants [82%]) and testing (58 scans [12%]; 58 participants [18%]) sets.1.5-T, three-dimensional (3D) spoiled gradient-recalled 1 H-MRI and 3D steady-state free-precession 129 Xe-MRI.We developed a multimodal DL approach, integrating 129 Xe-MRI and 1 H-MRI, in a dual-channel convolutional neural network. We compared this approach to single-channel alternatives using manually edited LCEs as a benchmark. We further assessed a fully automatic DL-based framework to calculate VDPs and compared it to manually generated VDPs.Friedman tests with post hoc Bonferroni correction for multiple comparisons compared single-channel and dual-channel DL approaches using Dice similarity coefficient (DSC), average boundary Hausdorff distance (average HD), and relative error (XOR) metrics. Bland-Altman analysis and paired t-tests compared manual and DL-generated VDPs. A P value < 0.05 was considered statistically significant.The dual-channel approach significantly outperformed single-channel approaches, achieving a median (range) DSC, average HD, and XOR of 0.967 (0.867-0.978), 1.68 mm (37.0-0.778), and 0.066 (0.246-0.045), respectively. DL-generated VDPs were statistically indistinguishable from manually generated VDPs (P = 0.710).Our dual-channel approach generated LCEs, which could be integrated with ventilated lung segmentations to produce biomarkers such as the VDP without manual intervention.4.Stage 1.© 2022 The Authors. Journal of Magnetic Resonance Imaging published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *