A CT deep learning reconstruction algorithm: Image quality evaluation for brain protocol at decreasing dose indexes in comparison with FBP and statistical iterative reconstruction algorithms.

Researchers

Journal

Modalities

Models

Abstract

To characterise the impact of Precise Image (PI) deep learning reconstruction algorithm on image quality, compared to filtered back-projection (FBP) and iDose4 iterative reconstruction for brain computed tomography (CT) phantom images.Catphan-600 phantom was acquired with an Incisive CT scanner using a dedicated brain protocol, at six different dose levels (volume computed tomography dose index (CTDIvol): 7/14/29/49/56/67 mGy). Images were reconstructed using FBP, levels 2/5 of iDose4, and PI algorithm (Sharper/Sharp/Standard/Smooth/Smoother). Image quality was assessed by evaluating CT numbers, image histograms, noise, image non-uniformity (NU), noise power spectrum, target transfer function, and detectability index.The five PI levels did not significantly affect the mean CT number. For a given CTDIvol using Sharper-to-Smoother levels, the spatial resolution for all the investigated materials and the detectability index increased while the noise magnitude decreased, slightly affecting noise texture. For a fixed PI level increasing the CTDIvol the detectability index increased, the noise magnitude decreased. From 29 mGy, NU values converged within 1 Hounsfield Unit from each other without a substantial improvement at higher CTDIvol values.The improved performances of intermediate PI levels in brain protocols compared to conventional algorithms seem to suggest a potential reduction of CTDIvol.Copyright © 2024. Published by Elsevier Ltd.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *