| |

Brain tumor detection and segmentation using deep learning.

Researchers

Journal

Modalities

Models

Abstract

Brain tumor detection, classification and segmentation are challenging due to the heterogeneous nature of brain tumors. Different deep learning-based algorithms are available for object detection; however, the performance of detection algorithms on brain tumor data has not been widely explored. Therefore, we aim to compare different object detection algorithms (Faster R-CNN, YOLO & SSD) for brain tumor detection on MRI data. Furthermore, the best-performing detection network is paired with a 2D U-Net for pixel-wise segmentation of abnormal tumor cells.The proposed model was evaluated on the Brain Tumor Figshare (BTF) dataset, and the best-performing detection network cascaded with 2D U-Net for pixel-wise segmentation of tumors. The best-performing detection network was also fine-tuned on BRATS 2018 data to detect and classify the glioma tumor.For the detection of three tumor types, YOLOv5 achieved the highest mAP of 89.5% on test data compared to other networks. For segmentation, YOLOv5 combined with 2D U-Net achieved a higher DSC compared to the 2D U-Net alone (DSC: YOLOv5 + 2D U-Net = 88.1%; 2D U-Net = 80.5%). The proposed method was compared with the existing detection and segmentation network i.e. Mask R-CNN and achieved a higher mAP (YOLOv5 + 2D U-Net = 89.5%; Mask R-CNN = 67%) and DSC (YOLOv5 + 2D U-Net = 88.1%; Mask R-CNN = 44.2%).In this work, we propose a deep-learning-based method for multi-class tumor detection, classification and segmentation that combines YOLOv5 with 2D U-Net. The results show that the proposed method not only detects different types of brain tumors accurately but also delineates the tumor region precisely within the detected bounding box.© 2024. The Author(s), under exclusive licence to European Society for Magnetic Resonance in Medicine and Biology (ESMRMB).

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *