| |

Neural-network Density Functional Theory Based on Variational Energy Minimization.

Researchers

Journal

Modalities

Models

Abstract

Deep-learning density functional theory (DFT) shows great promise to significantly accelerate material discovery and potentially revolutionize materials research. However, current research in this field primarily relies on data-driven supervised learning, making the developments of neural networks and DFT isolated from each other. In this work, we present a theoretical framework of neural-network DFT, which unifies the optimization of neural networks with the variational computation of DFT, enabling physics-informed unsupervised learning. Moreover, we develop a differential DFT code incorporated with deep-learning DFT Hamiltonian, and introduce algorithms of automatic differentiation and backpropagation into DFT, demonstrating the capability of neural-network DFT. The physics-informed neural-network architecture not only surpasses conventional approaches in accuracy and efficiency, but also offers a new paradigm for developing deep-learning DFT methods.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *